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The branching of the steady motions of a heavy circular disc on an absolutely rough horizontal plane is investigated. The motions 
corresponding to critical points of the energy integral at fixed levels of two other integrals having the form of hypergeometric 
series are considered. © 2000 Elsevier Science Ltd. All rights reserved. 

It is well known that conservative non-holonomic Chaplygin systems with pseudo-cyclical coordinates, 
in addition to an energy integral, can also have other first integrals, the explicit form of which is unknown. 
Nevertheless, the existence and stability of the steady motions of such systems can be investigated using 
the Routh-Lyapunov-Salvadori theory (see, for example, [1-3]. However, it is extremely difficult to 
investigate the branching of the steady motions of such systems using the Poincar6-Chetayev bifurcation 
theory and has not yet been carried out since classical bifurcation theory requires a knowledge of the 
explicit form of all the first integrals. 

Below we attempt to construct Poincar6-Chetayev bifurcation diagrams in the problem of the steady 
motions of a heavy disc on an absolutely rough horizontal plane. As is well known [4-7], in this problem, 
in addition to the energy integral, there are two integrals corresponding to two pseudocyclical coordinates 
(the angles of precession and natural rotation) and represented in the form of hypergeometric series. 

Consider the motion, without slipping, of a heavy circular disc, resting on a horizontal plane. Suppose 
m is the mass of the disc, a is the radius, A 1 and A 3 are the equatorial and axial moments of inertia 
respectively and g is the acceleration due to gravity. 

Following the approach described in [3], we will define the position of the disc by the Cartesian 
coordinates of the projection of its centre onto the horizontal plane and the Euler angles 0, ~ and q~ 
(0 is the angle between the plane of the disc and the reference plane, ~ is the precession angle and 
tp is the angle of natural rotation). The equations of motion, taking the coupling equations into account, 
which express the fact that there is no slipping of the disc at its point of contact with the reference plane, 
can then be written in the form 

(Aj + ma 2)0 = A, q2 ctg 0 -  (A 3 + ma 2)qr-  m g a cos 0 

(A 3 + ma 2 )/- = maEqO 

d ( q s i n  0) = A3rsin 00 AI 

q = ~tsin0, r =  ff+~tcos0 

(1) 

Changing in (1) to a new independent variable--the angle 0, we obtain a second-order differential 
equation for r. By replacing the angle 0 by the new independent variable z, defined by the equation 
(see [4-7]) cos 0 = 1 - 2z, we obtain the hypergeometric equation [8] 

~z ma 2 A3 z(1-z)d~--~+(1-2z) - B r = 0 ,  B= Al(A3+ma2) (2) 

Hence, the problem of the motion of a disc is integrated using the hypergeometric function F(~, q, 
4; z). We recall that the hypergeometric series F(~, rl, 4; z) converges uniformly on any section of the 
numerical axis lying inside the range -1 < z < 1 [8]. 
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For Eq. (2) 

;=1,  o=B 
and consequently its general solution has the form 

r = c l F  (~, 11, 1; z) + c2F (~, 1"1, 1; l - z )  

where Cl and c2 are arbitrary constants and ~ and 11 are the roots of the quadratic equation 

s 2 - s  + B = 0  

Reverting from z to the previous independent variable 0 we obtain 

r = ClU I + C2U 2 

ul=F[~,r l ,1 ;s in20] ,  u 2 = ( ~ , ~ , l ; c o s  2 0 )  (3) 

Taking into account the expression for the derivative of a hypergeometric function, we obtain from 
(1) and (3) 

A3 
q = sin0 (CIU1--C2U2) 

2A l 

u , = F ( ~ + l , O + l , 2 ; s i n 2 0 ] ,  v 2 = F ( ~ + l , r l + l , 2 ;  cos20]  (4) 

We know (see [3, 7]), that the disc can execute steady motions of the form 

0 = ~ = c o n s t ,  0 = 0 ,  q=qo  =c°nst, r = r  o=const  

if the three constants o~, q0 and r 0 satisfy the single equation 

Alq20 ctgtz - (33 + ma2)q0r0 - m g a c o s ~  = 0 (5) 

For simplicity we will henceforth assume thatA1 = k m a 2 , A 3  = 2 kma 2, where k = 1/2 in the case of 
a hoop and k = 1/4 in the case of a disc. In addition, we denote the dimensionless constants of the first 
integrals, specified implicitly by relations (3) and (4), byX = Cld(a/g)  a n d  Y = c2~l(a/g). With this notation, 
Eq. (5) can be rewritten in the form 

a I j X 2  + 2 a  12 X Y  + a22 Y2 _ cos tx = 0 

aii = tl i sin ot(ku i cos I~ + (-- 1) i (2k + 1 )u i) ,  i = 1,2 (6) 

a12 = sin ~((k + ~)(uju 2 - u2v I ) - k v  iv2 cos ct) 

For each o~ # 7t/2, Eq. (6) specifies a hyperbola, and when tx = g/2 it specifies a pair of intersecting 
straight lines X = Y and X = -Y, which correspond to two single-parameter subfamilies of steady motions 
of the disc of the form 

0 =  r~ I~=0, r = 2 u .  c l = ~  , q = 0 ;  u . = F ~ , r l , 1 ; l ]  (7) 
2 '  \ 2 )  

0 = / t  t~=0, q = 2 v . c l = C 0  , r = 0 ;  v . = F ~ + I , 0 + I , 2 ; 1 ]  (8) 
2 '  k 2 J  

These subfamilies correspond to uniform rolling of a vertically situated disc along a straight line (7) 
and uniform rotation of a disc about a vertically situated diameter (8). The first is stable (unstable) 
when 

2a(2k + I) 
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while the second is stable (unstable) when 

co 2 > O 2o = g (co 2 < co ) 
a(k  + 1) 

(see [3, 7]). These conditions can be rewritten as follows: 

X 2 > X+ 2 = (8(2k + l)u, 2)-1 

X 2 > X 2_ =(4(k+l)v2) -l 

We will investigate the behaviour of the steady motions of the system close to the value 0 = x/2. To 
do this we will consider Eq. (6) when ~ = ~/2 + el, X = X0 + e2, Y = Y0 + e3, where X 0 and Y0 are 
certain fixed values, while el, e2, e3 are small quantities. Expanding the left-hand side of  Eq. (6) in series 
in el, e2, e3 (we use the hypergeometric series to expand the function F)  and retaining terms no higher 
than first-order infinitessimals, we obtain the relation 

(2k + 1)u. u. (Y02 - X~) + 2(2k + 1)u. v, (YoE3 - X0e2) + 

+ [ 1  (X°+y°)24X+2 ( x ° - r ° ) 2 ] e ,  = 0 4 X _ 2  

When X0 = ---Y0 this relation takes the form 

X~ 2 ) ej = 2(2k + l ) u , o , X o ( e  2 T- e3) 

Hence, non-trivial solutions of Eq. (6) exist in the neighbourhood of the families X = +Ywhen  

sign((X 2 - Xo 2)E I )=  sign(Xo(~ 2 -T- e3) ) 

This analysis enables us to construct the surface c~ = o~(X, Y) in the neighbourhood of the straight 
l inesX = _+Yusing Eq. (6). 
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